

# GIMNASIO SABIO CALDAS (IED) Nuestra escuela: una opción para la vida GUÍAS DE APRENDIZAJE — PLAN ESCOLAR

| Código  | PENP - 01         |
|---------|-------------------|
| Versión | 001               |
| Fecha   | 18/03/2020        |
| Proceso | Gestión Académica |

| <b>DOCENTE</b> Mónio | ca C. Agudelo – Nelson González <b>Grado</b> Séptimo |                                              |                 |                |
|----------------------|------------------------------------------------------|----------------------------------------------|-----------------|----------------|
| ASIGNATURA E         | SIGNATURA Educación Física                           |                                              |                 |                |
| Correo electrónic    | co de nelson.gonzalez@sabiocaldas.edu.co             |                                              |                 |                |
| contacto             |                                                      | monica.agudelo@sabiocaldas.edu.co            |                 |                |
| Periodo académic     | co Segundo Periodo                                   |                                              |                 |                |
| Tiempo de            |                                                      |                                              |                 |                |
| ejecución de la      | 15 días (julio 6 al 16 de julio)                     |                                              |                 |                |
| actividad            |                                                      |                                              |                 |                |
| ¿Qué                 | Argumentativa - Praxeológico                         |                                              |                 |                |
| competencia(s)       |                                                      |                                              |                 |                |
| debo alcanzar?       |                                                      |                                              |                 |                |
| Temáticas            | Fisiolo                                              | gía del ejercicio                            |                 |                |
| mediadoras           |                                                      |                                              |                 |                |
|                      | Socioafectiva:                                       |                                              |                 |                |
|                      | Recon                                                | oce la importancia de interpretar los benef  | icios de la act | ividad Física, |
| Metas                |                                                      | do en cuenta su mejor calidad de vida        |                 |                |
|                      |                                                      | s de aprendizaje:                            | _               |                |
|                      | Realiz                                               | a secuencias de ejercicios de resistencia ar | aeróbica.       |                |

## **CRITERIOS DE EVALUACIÓN:**

| ¿QUÉ SE VA A<br>EVALUAR? | ¿CÓMO SE VA A EVALUAR?  | ¿CUÁNDO SE VA A<br>EVALUAR? |
|--------------------------|-------------------------|-----------------------------|
| Realiza secuencias de    | CAPACIDADES FÍSICAS     | 9 de 16 julio               |
| rutinas físicas con      | Resistencia anaeróbica. |                             |
| intervalos               |                         |                             |

## SEMANA 1 (Julio 6 hasta 9 de julio)

## **ACTIVIDAD INICIAL: Rutinas de pensamiento**

¿Qué importancia tiene saber el funcionamiento de nuestro cuerpo cuando hacemos actividad física?

# **CONTEXTUALIZACIÓN:**

### Respuesta de los sistemas respiratorio y cardiovascular al ejercicio físico

Cuando el organismo humano pasa de encontrarse en condiciones de reposo a desarrollar una actividad física intensa, sus sistemas respiratorio y cardiovascular modifican sus prestaciones para dar respuesta a las demandas metabólicas elevadas que impone la actividad física. Ya vimos <u>aquí</u> como se regula la respiración, y <u>aquí</u> y <u>aquí</u>, la circulación sanguínea, que son las dos funciones que permiten ajustar el suministro de oxígeno a las necesidades. Veremos a continuación cuáles son las magnitudes propias del funcionamiento del sistema respiratorio y del sistema cardiovascular en condiciones de reposo, primero, y de actividad intensa después.

### Reposo

En condiciones de reposo respiramos entre unas catorce y dieciséis veces (ciclos completos de inspiración y espiración) por minuto; o sea, nuestra **frecuencia respiratoria** (**f**<sub>r</sub>) se encuentra entre **14 y 16 min**<sup>-1</sup>. Un **hombre** inspira en cada ocasión (**VC**: **volumen corriente**) alrededor de **0,5-0,6 l** y una **mujer 0,4-0,5 l**; en otras palabras, en cada una de esas inspiraciones introducimos alrededor de medio litro de aire nuevo en los pulmones. Por lo tanto, el volumen de medio respiratorio inspirado y espirado por unidad de tiempo (**V**: **tasa ventilatoria**) es de unos **7,5 l min**<sup>-1</sup>.

No obstante, a los **300 millones de alveolos** (similares a **microburbujas** de **0,3 mm de diámetro** y cuya **superficie total** equivale a **100 m**<sup>2</sup>) no llegan los **7,5** l<sup>-1</sup>, sino 5,4 l min<sup>-1</sup>, ya que la diferencia corresponde al volumen inspirado que llena los conductos (bronquios y bronquiolos) que no participan en el intercambio respiratorio y son, por lo tanto, espacio muerto.

Por otro lado, en caso de necesidad, pueden introducirse mayores volúmenes de aire en los pulmones (VIR: volumen inspiratorio de reserva): hasta tres litros (VIR = 3 l) los hombres y dos litros (VIR = 2 l) las mujeres. También pueden expulsarse mayores volúmenes en la espiración. Ese volumen adicional que puede ser exhalado (VER: volumen espiratorio de reserva) es de 1,2 l, en los hombres, y 0,8 l, en las mujeres, aproximadamente. Pero hay un volumen residual (VR) que no es posible desalojar: 1,2 l y 1 l en hombres y mujeres, respectivamente. La capacidad pulmonar total (CPT) masculina es de 6 l y la femenina de 4,2, aproximadamente.

El aire inspirado tiene una **presión parcial de oxígeno** (**pO**<sub>2</sub>) **de 158,8 mmHg** pero la del oxígeno de los alveolos se encuentra entre **100 mmHg** y **105 mmHg**.

En condiciones de reposo a la sangre pasan 0,3 l min<sup>-1</sup> en los hombres. Esa es su **tasa de consumo de oxígeno** ( $VO_2 = 0,3$  l min<sup>-1</sup>) en reposo.

En esas condiciones, el corazón late setenta veces por minuto (**frecuencia cardiaca**:  $\mathbf{f}_h = 70$  **min**<sup>-1</sup>) y el volumen impulsado en cada latido (**volumen sistólico**: **VS**) es de 71 ml. El **gasto cardiaco** –volumen de sangre impulsado por el corazón por unidad de tiempo- es de 5 l min<sup>-1</sup>. Como tienen alrededor de 5 l de sangre, necesitan alrededor de un minuto para hacer pasar toda su sangre por el corazón. Esas

cifras corresponden a hombres sin entrenar; si se trata de **atletas de resistencia**, **VS** rondaría los **100 ml** y  $\mathbf{f}_h$  sería de unos **50 min**<sup>-1</sup>, aunque puede ser incluso inferior.

La tensión parcial de oxígeno en la sangre arterial ( $tO_2A$ ) es de unos 95 mmHg, y la de la que llega procedente de los tejidos ( $tO_2V$ ), de unos 40 mmHg, y la diferencia entre las concentraciones arterial y venosa de oxígeno ( $C_A - C_V$ ) es de 0,06 l  $O_2$  por litro de sangre.

### Actividad intensa

Durante la realización de **ejercicio físico intenso** la **frecuencia respiratoria** puede pasar **de 16 min**-¹ **a 40-60 min**-¹, dependiendo del individuo y de la intensidad del esfuerzo.

El volumen inspiratorio puede llegar a valores máximos de 2 l (en reposo era de 0,5 l), y la tasa ventilatoria pasa de los 7,5 l min<sup>-1</sup> del estado de reposo a valores de entre 90 y 120 l min<sup>-1</sup> en condiciones de intensa actividad. En esas condiciones el consumo de oxígeno (VO<sub>2</sub>)puede llegar a 3 o 4 l min<sup>-1</sup> en hombres jóvenes no entrenados, y a 5 l min<sup>-1</sup> en jóvenes con entrenamiento de resistencia.

La presión parcial de oxígeno en condiciones de actividad intensa puede aumentar hasta  $\mathbf{pO}_2 = \mathbf{115}$  **mmHg** dependiendo del nivel de actividad y, por lo tanto, de demanda metabólica; cuanto mayor es la demanda más alta es la presión parcial alveolar porque, como hemos visto, la frecuencia respiratoria y tasa ventilatoria aumentan, elevándose de esa forma la renovación de aire y, en consecuencia, supresión parcial de oxígeno.

Para poderlo sostener, el corazón puede bombear **hasta 20 l min**-¹ (en hombres jóvenes no entrenados) y para ello, ha de latir a **frecuencias cardiacas** que pueden alcanzar los **190 latidos por minuto (min**-¹), y el **volumen sistólico** pasar a unos **105 ml**. Los **hombres con entrenamiento de resistencia** pueden alcanzar valores de **gasto cardiaco** de **35 l min**-¹, con frecuencias cardiacas (**f**<sub>h</sub>) similares o algo inferiores a las de los hombres no entrenados, pero volúmenes sistólicos (**VS**) de cerca de **180 ml**.

Conforme aumenta la demanda de oxígeno por parte de la musculatura esquelética, la diferencia entre las concentraciones de oxígeno de la sangre arterial y la sangre venosa ( $C_A - C_V$ ) aumenta de los 0.06 l por litro de sangre de las condiciones de reposo a **máximos de 0,14 l O\_2 por litro de sangr**e para consumos de oxígeno de 5 l min<sup>-1</sup>.

Bajo condiciones de reposo los músculos reciben muy poca sangre, pero en condiciones de trabajo máximo, **1 kg de músculo esquelético puede llegar a recibir 2,5 l min**. Dado que esa cifra representa más de un 10% del gasto cardiaco, no es posible mantener más de 10 kg de músculo (la tercera parte de toda la musculatura) trabajando a máximo nivel, puesto que hay que seguir irrigando e encéfalo y el corazón, en primer lugar, y otros órganos y tejidos, aunque estos recibiendo muy poca sangre. <u>Aquí</u> puedes encontrar una descripción detallada de cómo se reorganiza el flujo sanguíneo al pasar de reposo a la actividad intensa.

### SEMANA 2 (Julio 12 hasta 16 de julio)

### **ACTIVIDAD INICIAL:**

Material de clase: escalera didáctica.

- 1. Calentamiento general por medio de rutina de ejercicios y estiramientos con intervalos de tiempo
- 2. A partir de la contextualización el estudiante tendrá la posibilidad de interpretar por medio de una gráfica, como el sistema cardiorrespiratorio, responde al ejercicio
- 3. Desde los diferentes ejercicios se realizará una secuencia de ejercicios en donde el estudiante, tenga la posibilidad crear movimientos repetitivos de un minuto, y recuperación de 30 segundos.
- 4. Movimientos de gimnasia de piso con estiramientos.

#### **ACTIVIDAD DE AFIANZAMIENTO:**

Evidencia fotográfica de actividades de clase.

REFERENCIAS: WEBGRAFÍA.

https://culturacientifica.com/2018/03/20/respuesta-los-sistemas-respiratorio-cardiovascular-al-ejercicio-fisico/

Semana 1:

Semana 2: