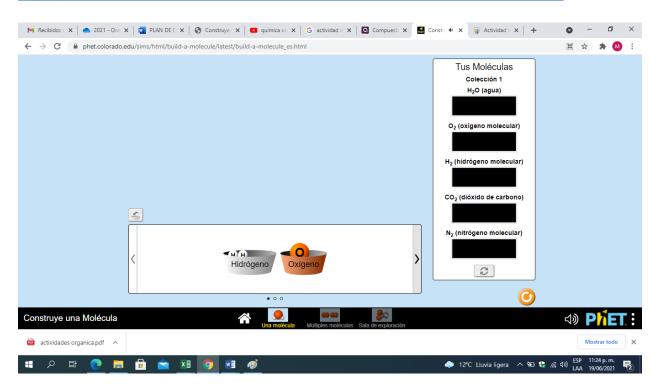


GIMNASIO SABIO CALDAS (IED) Nuestra escuela: una opción para la vida GUÍAS DE APRENDIZAJE – PLAN ESCOLAR

Código	PENP - 01
Versión	001
Fecha	18/03/2020
Proceso	Gestión Académica


DOCENTE	DOCENTE Mónica Andrea Pinto Niño			Grado	Noveno
ASIGNATURA Química					
Correo electr	orreo electrónico de contacto <u>monica.pinto@sabiocaldas.edu.co</u>			<u>lu.co</u>	
Periodo académico Tercei		er periodo			
Tiempo de ejecución de la actividad 15 días (de 6 a 16 de		6 a 16 de j	julio)		
¿Qué competencia(s) debo alcanzar?		nzar?	Diferencia diversos tipos de fórmulas químicas y		
	los representa.				
Formulas químicas Empírica Estructural Electrónica Molecular Introducción a las reacciones químicas Introducción a la nomenclatura inorgánica					
Metas	Socio-afectiva: Muestra una actitud de respeto frente a las opiniones de sus compañeros y reconoce la importancia por el aprendizaje de las temáticas propuestas. Metas de aprendizaje: Comprende las funciones básicas de la nomenclatura inorgánica y diferencia diversos tipos de fórmulas químicas.				

CRÍTERIOS DE EVALUACIÓN:

¿QUÉ SE VA A EVALUAR?	¿CÓMO SE VA A EVALUAR?	¿CUÁNDO SE VA A EVALUAR? Fechas	
Procesos para llegar a la	Mediante el desarrollo de	Primera semana: 6 a 9 de	
fórmula de un compuesto	ejercicios que permitan	julio	
	aplicar las reglas		
Temáticas explicadas en	Aplicando evaluación en	Segunda semana:	
clase sobre formula	donde los estudiantes		
empírica y molecular.	carguen las soluciones al	12 a 16 de julio	
	classroom		

SEMANA 1 (6 hasta 9 de Julio) ACTIVIDAD INICIAL: construye los compuestos que puedas en el menor tiempo posible.

https://phet.colorado.edu/sims/html/build-a-molecule/latest/build-a-molecule_es.html

CONTEXTUALIZACIÓN:

Fórmula Empírica y Molecular

La **fórmula empírica** es la expresión más sencilla para representar un compuesto químico. Nos indica los elementos que están presentes y la proporción mínima en números enteros que hay entre sus átomos. A esta fórmula se le conoce también como "fórmula mínima" representada con "fe".

Por ejemplo:

Para su obtención es necesario saber la masa molecular de cada elemento químico.

Por ejemplo:

Calcula la fórmula empírica de una sustancia cuya composición centesimal es: 0,8% de H; 36,5% de Na; 24,6% de P y 38,1% de O.

Teniendo en cuenta la masa molecular de cada sustancia, se calcula el número de átomos relativos de cada elemento químico:

De Hidrógeno =
$$\frac{0.8}{1.008}$$
 = 0,794

De Sodio =
$$\frac{36.5}{23}$$
 = 1.587

De Fósforo =
$$\frac{24,6}{30.974} = 0,794$$

De Oxígeno =
$$\frac{38,1}{16}$$
 = 2,381

Si miramos cuál es el menor de todos y los reducimos a la unidad nos queda:

$$\square$$
 Número de átomos de $H = \frac{0.794}{0.794} = 1$

$$\square$$
 Número de átomos de Na $=\frac{1,587}{0.794}=1,999=2$

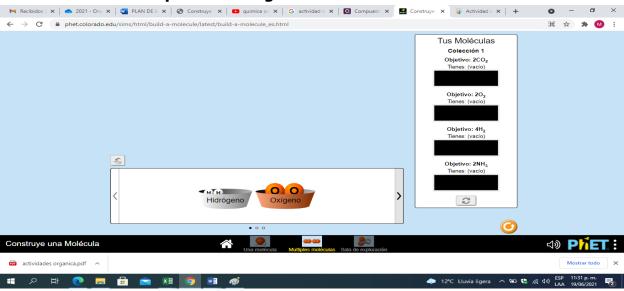
Número de átomos de P =
$$\frac{0.794}{0.794}$$
 = 1

$$\square$$
 Número de átomos de $O = \frac{2,381}{0.794} = 2,999 = 3$

Por lo tanto, la fórmula empírica de nuestro producto es Na₂HPO₃.

https://bioprofe.com/formula-empirica-y-molecular/

ACTIVIDAD DE AFIANZAMIENTO:


- 1. Continuación de la segunda parte del video. https://www.youtube.com/watch?v=HLYQJwQlyWI
- 2. Un compuesto tiene la siguiente composición en tanto por cien: 19,3% de Na, y 26,9% de S y 53,8% de O. Su peso molecular es 238. Calcula la fórmula molecular.

- 3. Una sustancia presenta una composición de 40% de carbono, 6,7% de hidrógeno y 53,3% de oxígeno. Sabiendo que su masa molecular es 60 gr/mol calcular su fórmula empírica y su fórmula molecular Datos Masas atómicas O = 16; H = 1; C=12
- 4. La fórmula empírica del ácido acético (el ingrediente importante del vinagre) es CH₂O. ¿Cuál es la fórmula molecular del compuesto si se sabe que su masa molecular aproximada es de 60 g?

VERIFICACIÓN DE APRENDIZAJES:

El estudiante debe responder a las preguntas realizadas por el docente que permitan el desarrollo de las actividades propuestas en la presente guía.

SEMANA 2 (12 hasta 16 de julio) Continua con el siguiente nivel para la construcción de compuestos inorgánicos.

CONTEXTUALIZACIÓN:

La **fórmula molecular** es la fórmula real de la molécula y está formada por los símbolos que son los elementos químicos y unos subíndices que nos indica el número de átomos que participan en la formación de la molécula. Se representa por "fm". *Por ejemplo:*

Nos indica cómo por cada dos Carbonos (C) hay cuatro átomos de Hidrógeno (H) y dos de Oxígeno (O).

★ Sulfato de cobre CuSO₄

En este compuesto tenemos un átomo de Cobre (Cu) unido a uno de Azufre (S) y a cuatro de Oxígeno (O).

Cuando queramos calcular fórmulas moleculares (fm), además de hallar la fórmula empírica (fe) y el peso molecular de la misma (PMfe), necesitamos conocer el peso molecular del compuesto final (PMc) y de esta forma poder aplicar las ecuaciones siguientes y obtener así la fórmula molecular.

$$n = \frac{PMc}{PMfe} \qquad FM = n(FE)$$

Por ejemplo:

El succinato de dibutilo es un repelente utilizado en casas para los insectos. Su composición es 62,58% de Carbono, 9,63% de Hidrógeno y 27,79% de Oxígeno. Si su peso molecular determinado experimentalmente es de 239g/mol, obtén su fórmula molecular.

En primer lugar, tenemos que calcular la fórmula empírica obteniendo el número de átomos de cada elemento químico:

De Carbono =
$$\frac{62,58}{12,01}$$
 = 5,2106

De Hidrógeno =
$$\frac{9,63}{1.01}$$
 = 9,5346

De Oxígeno =
$$\frac{27,79}{16}$$
 = 1,7369

Reducimos todos a la unidad y obtenemos el número de átomos de cada elemento:

Número de átomos de C =
$$\frac{5,2106}{1,7369}$$
 = 3

$$\square$$
 Número de átomos de H = $\frac{9,5346x167,3}{1,7369} = 5,5$

$$\square$$
 Número de átomos de $O = \frac{31,7369}{1,7369} = 1$

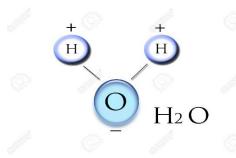
La fórmula empírica del compuesto es $C_3H_{5,5}O_1$. Redondeamos los subíndices multiplicando todos los elementos por 2 y la fórmula empírica nos queda finalmente: $C_6H_{11}O_2$

Para obtener la fórmula molecular tenemos que relacionar el peso molecular de ésta (PMc) con el peso molecular de la fórmula empírica (PMfe).

$$PMfe: 6x12,01(C) + 11x1,01(H) + 2x16(O) = 115,17g/mol$$

Con la ecuación antes mencionada relacionamos los dos pesos moleculares:

$$n = \frac{PMc}{PMfe} = \frac{230}{115,17} = 2 \quad \longrightarrow \quad FM = 2(Fe)$$


Nuestra fórmula molecular es: C₁₂H₂₂O₄.

Una vez que hemos determinado la fórmula de la molécula podemos estudiar su **estructura** que es la ordenación o distribución que tienen los diferentes átomos unidos entre sí para dar lugar a la molécula final.

https://bioprofe.com/formula-empirica-y-molecular/

1. ACTIVIDAD DE AFIANZAMIENTO:

- 1. La alicina es un compuesto que le da el olor al ajo. Se analizó dicho compuesto y se obtuvieron las siguientes composiciones porcentuales en masa, C: 44.4%; H: 6.21%; S: 39.5%; O: 9.86%. Calcule su fórmula empírica. Sabiendo que su masa molecular es aproximadamente 162 g, ¿cuál es su fórmula molecular?
- 2. La masa molar de la cafeína es de 194.19 g. ¿Cuál es la fórmula molecular de la cafeína C₄H₅N₂O o C₈H₁₀N₄O₂?
- 3. Proponga las estructuras moleculares de los anteriores compuestos

RÚBRICA DE EVALUACIÓN:

CRITERIOS	SIEMPRE	ALGUNAS VECES	NUNCA
Conocimientos previos y uso de			
recursos: Utilicé mis conocimientos			
previos, así como los recursos			
tecnológicos disponibles para			
desarrollar las actividades sugeridas			
por mis maestros.			

Autonomía: Organicé y utilicé de		
manera adecuada mi tiempo en casa		
para desarrollar las actividades.		
Esfuerzo y regularidad: Reflexioné		
sobre mi propio aprendizaje y fui		
constante en la ejecución de las		
actividades, las cuales desarrollé con		
la mejor actitud y disposición.		
Tiempo: Cumplí con los tiempos		
establecidos para el desarrollo de las		
actividades dentro de mi horario		
escolar.		
Acompañamiento: Tuve		
acompañamiento adecuado por parte		
de mis padres y/o cuidadores para		
lograr culminar mis actividades en los		
tiempos establecidos.		

REFERENCIAS: WEBGRAFÍA.

https://bioprofe.com/formula-empirica-y-molecular/